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Nonlinear Transport in the Boltzmann Limit 
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Formal expressions for the irreversible fluxes of a simple fluid are obtained 
as functionals of the thermodynamic forces and local equilibrium time 
correlation functions. The Boltzmann limit of the correlation functions is 
shown to yield expressions for the irreversible fluxes equivalent to those 
obtained from the nonlinear Boltzmann kinetic equation. Specifically, for 
states near equilibrium, the fluxes may be formally expanded in powers of 
the thermodynamic gradients and the associated transport coefficients 
identified as integrals of time correlation functions. It is proved explicitly 
through nonlinear Burnett order that the time correlation function expres- 
sions for these transport coefficients agree with those of the Chapman- 
Enskog expansion of the nonlinear Boltzmann equation. For states far 
from equilibrium the local equilibrium time correlation functions are 
determined in the Boltzmann limit and a similar equivalence to the 
Boltzmann equation solution is established. Other formal representations 
of the fluxes are indicated; in particular, a projection operator form and 
its Boltzmann limit are discussed. As an example, the nonequilibrium 
correlation functions for steady shear flow are calculated exactly in the 
Boltzmann limit for Maxwell molecules. 

KEY WORDS: Nonlinear transport; irreversible fluxes; time correlation 
function; kinetic theory. 

1, I N T R O D U C T I O N  

There are two c o m m o n  methods for describing t ranspor t  in a solid or fluid. 

The first and  oldest is by means of kinetic theory. An  approximate  kinetic 

equat ion for the reduced dis t r ibut ion funct ion is obtained,  and is solved to 
get the macroscopic equat ions of  mot ion  and  associated consti tutive equa- 
tions. For  example, the Bol tzmann kinetic equat ion  may be used to derive 
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the hydrodynamic equations with Newton's viscosity law for the momentum 
flux and Fourier's law for the heat flux. (1~ The second and somewhat more 
recent approach is the time correlation function method. (2~ In this case an 
appropriate formally exact solution to Liouville's equation is used to derive 
the macroscopic equations of motion and constitutive equations for the 
irreversible fluxes. The latter are expressed in terms of time correlation 
functions whose evaluation requires approximation schemes similar to those 
necessary to obtain the above-mentioned kinetic equation. The difference 
between the two methods lies essentially in the stage at which approximations 
are introduced. In kinetic theory, approximations are required at the outset 
to get a closed kinetic equation; in the correlation function method, approxi- 
mations are postponed until after the irreversible fluxes are identified, and 
are introduced only at the point of evaluating the correlation function. There 
is a certain advantage to the latter approach, in that some information is 
available from the general properties of the correlation functions (such as 
the Onsager reciprocal relations) before introducing approximations. Due to 
the different formulations, comparison of the results from these two methods 
is not always straightforward. Indeed, it is not a priori evident that identical 
approximations to the kinetic equation and to the correlation functions 
should yield the same irreversible fluxes. Nevertheless, equivalence of the 
time correlation function expressions for Navier-Stokes transport coeffi- 
cients at low density with those of the Boltzmann kinetic equation has been 
established. (3~ Similar correspondence has been made for solids (~ (Boltzmann- 
Peierls kinetic equation) and plasmas (5~ (Balescu-L~nard kinetic equation). 
These studies have been limited to the linear relationship between the fluxes 
and thermodynamic gradients (Green-Kubo relations), with almost no study 
of the more general nonlinear transport processes? The purpose here is to 
show the complete equivalence of the kinetic theory and time correlation 
function methods for the special case of a Boltzmann gas. In doing so the 
correlation functions characterizing states far from equilibrium are related 
to solutions to a set of coupled nonlinear equations, and equivalence with 
the nonlinear Boltzmann equation is established. Although strictly applicable 
only to gases, these expressions may aid in modeling correlation functions 
to gain a qualitative understanding of nonlinear transport of fluids in general. 
Additionally, the Boltzmann results have historically been a conceptual 
reference against which new results are measured. In this regard, it has been 
suggested recently that mode-coupling effects in the correlation functions are 
responsible for a nonanalytic dependence of the irreversible fluxes on the 
thermodynamic gradients, (7~ and it may be useful in assessing such results 

s In addition to Refs. 2 and 9, some other treatments of nonlinear transport phenomena 
can be found in Refs. 6. 
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to have some understanding of the corresponding correlation functions in 
the Boltzmann limit where such effects are neglected. 

The macroscopic fluid equations and formal expressions for the irrevers- 
ible fluxes in terms of correlation functions are discussed briefly in the next 
section for completeness, although most results have been given elsewhere3 6,8~ 
In Section 3 the Boltzmann limit is considered for two different cases, states 
near equilibrium and those far from equilibrium. For  the former, a formal 
expansion of the irreversible fluxes through terms quadratic in the thermo- 
dynamic gradients (nonlinear Burnett order) has been given recently ~8~ to 
identify equilibrium time correlation function expressions for the transport 
coefficients. The Boltzmann limit of these expressions is shown here to give 
the results of the Chapman-Enskog solution to the nonlinear Boltzmann 
equation. For  states far from equilibrium the local equilibrium time cor- 
relation functions are considered in the Boltzmann limit and shown to yield 
fluxes equal to those obtained from a formal solution to the nonlinear 
Boltzmann equation. A compact projection operator formulation (similar to 
that of Piccirelli ~m and Kawasaki and Gunton ~v~) is described. It is also 
shown how the Boltzmann limit may be put in this form, generalizing pre- 
vious projection operator solutions of the linearized Boltzmann equation. (~~ 
Finally, to illustrate the form of the nonequilibrium correlation functions 
for conditions far from equilibrium, the stress tensor for uniform shearing 
flow is considered. Ikenberry and Truesdell have shown m~ that an exact 
solution to this problem may be obtained from the nonlinear Boltzmann 
equation for Maxwell molecules. The discussion here constitutes an analogous 
solution in the correlation function formalism. 

2. F O R M A L  SOLUTION TO LIOUVILLE'S EQUATION 

2.1. The Hydrodynamic Equations 

The macroscopic equations of motion for a fluid are a reflection of the 
microscopic conservation laws characterizing the system. For  a simple fluid 
the relevant conservation laws are those of mass, energy, and momentum. 
Their local form may be written 

8--'/- + ~ = 0 (2.1) 

where r denotes the mass density p, energy density E, and momentum 
density g~, 

~b~ ~ (p, e, &) (2.2) 

The corresponding fluxes y~(r) are 

r ~  ~ (g,,  s,, t,j) (2.3) 
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where s~ is the energy flux, and t~j is the momentum flux. The microscopic 
state of the system F at some time t is specified, for given initial conditions, 
by the solution to Liouville's equation 

~F/~t + LF = 0 (2.4) 

Here L is the Liouville operator, defined for arbitrary phase function A by 

LA = {A, H} 

with {., .} denoting Poisson brackets and H the Hamiltonian. The macro- 
scopic conservation laws follow by averaging (2.1) over the solution to 
Liouville's equation 

a 
~ <~b~; t> + Fr~ @"'; t> = 0 (2.5) 

with the notation 

--, ~ 1 
(A; t}  = u~_,h3-Y~NtJdF AF(t) (2.6) 

and F represents a point in the phase space of the N-particle system. The 
quantities (~b,; t> denote the macroscopic nonequilibrium mass density, 
energy density, and momentum density. It is more common, however, to 
describe the system in terms of other variables, such as temperature, flow 
velocity, etc. To introduce such variables it is usual to define them in such 
a way that they are related in a manner similar to that of the equilibrium 
state. A suitable definition is obtained by requiring that the nonequilibrium 
average of ~b~ be the same as the corresponding local equilibrium average, 

(~b,~; t> = <~,; t>L (2.7) 

Here (~b~; t)L is the average of ~b~ over a local equilibrium distribution at 
time t, 

and 

1 f. 
<A; -  .dr AFt(,) 

J 
(2.8) 

Fz(t) - e xp ( -Q( t )  - f dr y~(r, t)~(r))  (2.9) 

The local thermodynamic variables y~(r, t) are 

y~ ~+ ( - ~  + �89 2, fi, -flUO (2.10) 

where fl-1~ is the chemical potential per unit mass; t3 = 1/kT, where T is the 
Kelvin temperature and k is Boltzmann's constant; and U~ is the flow 
velocity. Finally, Q(t) is determined by the requirement that FL(t) be nor- 
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malized to one. The space and time variation of the y,(r, t) is therefore 
defined through Eq. (2.7). The macroscopic conservation law may now be 
written 

.~, - 37* (2.11) ~t ( ~ ;  t)L + Ur, ( r "  t>L = at---S- 

where the irreversible flux 7*~(r, t) has been defined by 

7~*, = (7.,; t) - (7.,; t)z (2.12) 

and[ represents the irreversible part of the flux (7~; t). For a simple fluid 
the local equilibrium averages in (2.11) are found to be 

(~b,; t)z ~ (F, ff + �89 U2, FU,) 

(7.,; t)~ ~ (~u,, (h + �89 e~,j + ~U, Uj) 

where # and ~ are the macroscopic mass and internal energy densities, P is 
the pressure, and h = t~ + P is the enthalpy density. The left side of Eq. 
(2.11) represents the contribution from the Euler equations for a perfect fluid. 
Since the left side is an explicit functional of the y,(r, t), Eqs. (2.11) may be 
written as equations for y~, 

Bye(r, t)  i 8ye(r', t)  = dr' g2B~(r, r') 87B~(r' t) 
8 ~  + dr' K~'~(r, r') ~r~' 8r,' 

with 

(2.13) 

g.~(r, r') ~ (~.(r)~B(r'); t)L 

f tr - 1  rt i tt r )h~B(r , g~B(r, r') = dr g,~ (r, r') (2.14) 

~ ~ t . h~a(r, r') = (~b,(r)7o~(r), t)L 

The time dependence of g, K, and h has been left implicit. Also, the tilde over 
a phase function A denotes the deviation from its local equilibrium average, 

.g(t) -= A - (A; t)L (2.15) 

Although K~o and g,o are explicit functionals of the y~, Eqs. (2.13) still 
require constitutive equations for 7"~ as functionals of the y,  before a closed 
set of equations for the y,  are obtained. Equations (2.13) together with such 
constitutive equations form the hydrodynamic equations for the system. 

2.2.  I r r e v e r s i b l e  F luxes 

To obtain an expression for 7*~(r, t) as a functional of the y~(r, t), an 
appropriate formal solution to the Liouville equation may be used. Any 
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solution requires specification of initial data, and for simplicity the interesting 
but special case of initial local equilibrium will be used. Several equivalent 
forms of the solution are obtained in Ref. 8, a convenient one of which is 

f ( t )  = FL( t )  + d-r e -L~t-~) dr ~,(r, "0 

8~,*,(r, ~,) ~(r ,  r)]FL(r) (2.16) 
+ a r ~  

with 
f. 

t )  ~?.,(r, t )  - | d r '  ~,(r', t)K~,(r', r; t) 
J (2.17) P 

~ ( r , t ) - = J d r ' -  ' -~ ' 4~B( r )gB~ (r ,  r) 

The phase functions ~ and ~ form a biorthogonal set with respect to the 
local equilibrium average, 

(~ ( r ,  t )~(r ' ,  t); t )L = 3~ ~(r - r') (2.18) 

Also, the ~,~ are orthogonal to this set, 

(~, ( r ,  t)~B(r' , t); t>L = 0 = (qg,,(r, t )~(r ' ,  t); t>L (2.19) 

Substitution of the formal solution (2.16) into the definition (2.12) gives 
y*~ as a functional of the thermodynamic variables y~ as desired, 

' f [  fo ' 
~*i(r, t )  = d r  dr'  G~i,~j(r, r , t, T) ~Ye(r"  r )  

a t  j-' 

+ H,,.~(r, r", t, ~-) Oy~j(r',0rj, ~')1 (2.20) 

with 

G~,.,j(r, r ' ;  t, -c) = <[eL<~-~)~,,(r, t)]~Bj(r' , ~-); ~'>L (2.21) 

H,,.a(r, r ' ; t , - r )  - ([eL(t-~)~,i(r , t)]~,(r', r); r>L (2.22) 

Use has been made of the fact that 

~,*,(r, t) = (~,(r ,  t); t> = (~,(r ,  t); t> (2.23) 

The correlation functions G and H are generalizations of those occurring 
for linear transport. The latter are obtained by replacing FL everywhere by 
the strict equilibrium distribution F0: 

G~,.~j(r, r ' ;  t, ~-) ~ <[eL~'-~)q~,~(r)]~Bj(r')>o (2.24) 

H~.~(r, r ' ; t ,  r ) ~  <[eL~-~)~,,(r)]~a(r')>o (2.25) 
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where ( . . . ) 0  denotes an equilibrium average. Even for this linear case, there 
does not appear to have been a complete study of the relationship to results 
from kinetic theory, beyond linear Navier-Stokes and Burnett orders. (~2~ 
Such a study is possible in the linear case without restriction to the Boltzmann 
limit; however, the following sections will be concerned as well with the 
nonlinear case, for which less is known about the general kinetic theory, 
and attention will be restricted to the Boltzmann limit. First, however, an 
alternative formulation of y*~ will be noted. 

2.3. Projection Operator Formulation 

The formal expression for y*~(r, t) given by Eq. (2.20) is only an implicit 
expression for y*~ because of its occurrence also on the right side of the 
equation. The latter may be removed by the introduction of a suitable 
projection operator. The projection operator Pt is defined by 

PtA = f dr ~(r, t)@~(r, t)A; t)L (2.26) 

(recall that ~ and ~ form a biorthogonal set). Then it is readily shown that 

f dr ~7";(;, r) ~(r, r) = FE I(r)P~*L[F(r) - FL(r)] (2.27) 

P~* =-- FL(r)P~Fy l(r) (2.28) 

With Eq. (2.27), the formal solution to Liouville's equation (2.16) may be 
rewritten as 

F(t) - FL(t) = dr e -z"-~)Fz(r) dr q~,(r, r) 3y~(r, r) 

f2 + dr e-Ut-~P~*L[F(r) - Fz(r)] 

o r  

f"o j U*(t, r)Fz(r)) (2.29) 
g ~y~(r, r) 

F(t) = FL(t) + dr dr ~r, 

with the operator U* defined by 

t U*(t, r) - T+ e x p  dr" (1 - P~)L (2.30) 

and T+ is the chronological time ordering operator. 
Returning to the determination of ~,*~, substitution of (2.29) into (2.23) 

leads to 

s y*i(r, t) = dr dr' C~.Bj(r, r'; t, r) ~Y~(r'----2' r) (2.31) 
(gr/ 
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with 
C,,,aj(r, r ';  t, 7) = ([U(t, T)~,~(r, t)]~aj(r', 7); T)L 

U(t, 7 ) =  T_ exp{~t d~' L(1 - P~,)} (2.32) 

These equations, (2.31) and (2.32), are equivalent to Eqs. (2.20)-(2.22). The 
form of Eq. (2.31) differs from that of (2.20) in that there is no explicit 
dependence on 7", in the former. However, a price has been paid since the 
time evolution of the system is modified by the projection operator P* 
(or P), and is no longer straightforward to interpret or analyze. The relationship 
of the kernel C in (2.31) to those of (2.20) is easily found to be 

C~,.~j(r, r ';  t, 7) = G~i,~j(r, r'; t, ~-) 

+ ~t d~' f dr" H~,.~(r, r" ; ~ v  Vo / ,7.) t, r') 8r~' C~ r , -c , 

(2.33) 

The form of the general hydrodynamic equations (2.13) and the fluxes (2.20) 
and (2.31) is given more explicitly in terms of/3, ~, and U in Appendix D. 

3. THE B O L T Z M A N N  L I M I T  

The irreversible fluxes 7"~ are governed by the local equilibrium cor- 
relation functions G and H of Eqs. (2.21) and (2.22). For the linear case 
these become equilibrium time correlation functions whose properties may 
be related, in the low-density limit, to the solution of a corresponding linear 
Boltzmann equation. (3~ The equations determining the local equilibrium 
correlation functions are nonlinear, however, and their connection with 
Boltzmann kinetic theory is somewhat more remote. The Boltzmann limit 
of  the time correlation function formulation will be studied in two stages. 
First, for states near equilibrium, the gradients ay~/ar are small and an 
expansion of  the irreversible fluxes in these gradients leads to constitutive 
equations characterized by transport coefficients. The latter are defined as 
time integrals of certain equilibrium correlation functions, and it is verified 
that the Boltzmann limits of these correlation function expressions for the 
transport coefficients agree with those of the Chapman-Enskog solution to 
the nonlinear Boltzmann kinetic equation. When the fluid is far from equi- 
librium not all of the thermodynamic gradients are small, so that a Chapman- 
Enskog expansion of the fluxes is not possible. In this case the Boltzmann 
limits of the local equilibrium correlation functions G~.~j and H~.B of Eqs. 
(2.21) and (2.22) must be studied directly; a formal equivalence with Boltz- 
mann kinetic theory is again established. 
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3.1. Near  Equi l ibr ium 

The most commonly studied experimental and theoretical situation 
corresponds to a system disturbed only slightly from equilibrium. Then, 
with the thermodynamic gradients as a small parameter, the exact expression 
(2.20) for the irreversible fluxes may be expanded formally to give 

7*~(r, t) = ~ (1) aYe . (2,1) a2Ye .(2.2) ~Ye ay. 
gai,Bjtc ~ gc~i,e],lzl~ ~rj ~r k ,~,,,eJ ~ + + + -.. (3.1) 

The first term on the right of Eq. (3.1) corresponds to Navier-Stokes-order 
irreversible fluxes, while the second and third terms correspond to linear (12) 
and nonlinear Burnett-order fluxes, respectively. The constants 7 (''q) are the 
associated transport coefficients. This Chapman-Enskog type of  expansion 
for 7* has been discussed in detail recently, and the transport coefficients 
identified as (a) 

f; r~i.eJ" (1) = lim dr ( [ e L ~ ( 0 ,  t)]ff)ej>o (3.2) 
t - - *  cr 

f2J . ~2,~) lira dr dr' [r~' 3~ e + r " ' r,i.Bjk = t)]~zj(r, t)>o (3.3) 
[ : - ~  oo 

Here 

. (2,2) 1 dr r([eL*~,~,(O, t)]~z~)o C3c~e rai,ey,,k = ~y, 
t ' ~ L J o  

+ f2 dr f dr' [r( 3a. + rc~.] 

t) 

q) ==- f dr 4(r), c~  =_ f dr' K~e(r, r ') 

where K~B is defined by Eq. (2.14). 
The Boltzmann limits of (3.2) and (3.3) are known from the study of 

equilibrium time correlation functions composed of two phase functions, 
each being sums of single-particle functions. ~ The nonlinear Burnett coeffi- 
cient (3.4), however, depends on correlation functions with three such phase 
functions at two times, for which the usual theory does not apply. Further- 
more, if the projection operator formulation for the fluxes were used, an 

4 The literature on kinetic theory of two-time correlation functions is extensive. For 
recent reviews and references see Refs. 13. 
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equivalent expression for 7 ' / 2 ' 2 )  would be obtained, although expressed in 
terms of  correlation functions with three phase functions at three different 
times. The Boltzmann limit of these more general multitime correlation 
functions has been determined and the above may be obtained from the 
results, ~4~ 

(Adq)A2(t2))o = f dx~fo(p~)adx~)Ttl-t2a2(x~), q >1 t2 (3.5) 

<A~(q)A~(t2)A3(t3))o 
t" 

= J dxl fo(p~)adxl)T~ 1 _ t~[a2(x~)Tt 2_ t~a3(xl)] 

f,1-~2 g + Jo dT J dx~ fo(p~)a~(xl)Tt 1 _ ,2-,Js[T~a2, T~ + t2-t,a3] 

Ftz - ta  [. 

+ )o &. J dxl fo(pOaa(x~)T~ - t.-~J,[T,*a2, Tz+ t~- t2a,] 

tz /> tz >~ ta (3.6) 

Here the A~ are arbitrary sums of  single-particle phase functions with 
vanishing average, 

N 

A~ = i__~ ~ [a,(x,) - <a,(x0)0] (3.7) 

and ~/(p) = a ( - p ) .  Also, T, is the time development operator for the linearized 
Boltzmann equation 

T, = exp - [ ( v . V  + 1)tl (3.8) 

and Tt* is the adjoint operator. The operators I and d~ are the linearized and 
symmetric bilinear Boltzmann operators, respectively, 

= f o  a(P~)f "'" (fo(pl)fo(p2)[h(P~) + h(p2) - -  h(~t) - h(O2) ] l[h] 
J d 

Js[h, g] =- - f  ~ l(p~) f ... f fo(P~)fo(Pz)[h(p~)g(Pz) + h(p2)g(pl) 

- - Pl - P2 I - h (~ )g (~2)  - h(p2)g(pl)] ~ b db & tip= (3.9) 
[ 

Finally, fo (P l )  is the Maxwel l -Bol tzmann distribution normalized to the 
number density n; xi denotes the posit ion and momentum of  the ith particle; 
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and ~ denotes the scattered momentum. Equations (3.5) and (3.6) may now 
be used to evaluate the expressions (3.2)-(3.4) for the transport coefficients. 
To do so first note that the fluxes q~(r, t) are of the form 

L, (r ,  t) --- 7. tlxo) + t lxo,  (3.10) 
O" O" :fi O" 

where ~ ( r ,  t]xD is a single-particle function and ~ ( r ,  tlxo, x~,) is a two- 
particle function. A similar form holds for the functions ~ and ~. It is easily 
shown that the two-particle functions do not contribute to lowest order in 
the density, and so the fluxes reduce to phase functions of the type (3.7). 
The correlation functions defining the transport coefficients ~,(P'q~ may then 
be evaluated using the results (3.5) and (3.6). 

Navier-Stokes coefficients: Substitution of (3.5) into (3.2) gives 

/~ '  lim I ~dr f - (3.11) dXl f o(pl)(~a~(pl) 3(r a~,BJ 
do J 

where use has been made of the fact that the q dependence of the single- 
particle function occurs through a delta function, 

4~,(r, t]x~) =,~.~(p~) 3(r - qO, ~(r ,  t[x~) - ~(p~) ~(r - q~) 

(3.12) 

and the residual dependence of ~,(p~) and ~b,(p~) on r, t through the y~ has 
been left implicit. Then, carrying out the time integral and integral over q~ 
in (3.11) gives 

~(i) ~i.Bj = ( ~ ,  I-1~Bi) (3.13) 

where a scalar product notation has been introduced, 

(h, g) =-- f dpfo(p)h*(p)g(p) (3.14) 

Linear Burnett coefficients: Equation (3.3) may be written with the use 
of (3.5) as 

fo fdpfdq ,~2,~> = l i m  d~" e - ~  r~.ej~ ~ ~ fo(p~)~,(P~) 3(q~) 
z ~ O +  

x T,(ql k ~a + rc~a)$aj(pl) 
Performing the time integral and expanding the resolvent as 

(z + v~.V~ + I) -a = (z + I) -~ - (z + v~.V~ + I)-~v~.V~(z + I) -~ 

leads to 

7(~'~) = ( I - ~ , i ,  (c~,~ v~ ~ze)l-~qSzy) (3.15) cd ,  BYh: 
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Nonlinear Burnet t  coefficients: In a manner similar to that for the linear 
Burnett coefficients, Eq. (3.4) may be written 

~m+ { ~[ ~ f dp f dq fo(p )r ) ,(2.2) 1 1 1 cd(P l  r~t.,j.,~ = dr re -~  
z 

fo f ;  + dr  e - ~  dp~ dq~fo(p~)r 3(q~) 

x T,(ql  ~ 3 3 , +  rc~,)[~--y a r  r162 

+jf dre-='['dr, fdp, fdq, fo(pOr 
~ 0  

% 

• (3.16) 

The low-density time development of the space moment of the conservation 
laws (2.1) is 

( dqx Ttqlkr = ( d q x  qlZr - ~ dr l  Tit CA~- rr (3.17) 
3 J 30 

where the time independence of the conserved variables has been used. After 
substitution of (3.17) into (3.16), the time integrals are done with the 
identities 

dz  dr '  z'  e -  =e~(~- ~')e b~" = (z - a ) -  l(z  - b) -2 

fo dr  r dT' e-~e:(~-~')e w = (z - a ) - l ( z  - b) -2 + (z - a ) -2 ( z  - b) -1 

lim dr  e -zt  dr1 e a(t-h) ebll dr2 e c~ + dr2 ebl2eCtl 
; :~0  + "/0 

- '  f: - ] -- ~ zlim+(z -- a)-1 d r x e - ~ t l  d r ze~12(  dra~ 
dO 

1 . 
~ f i m + ( z  - a ) - l b - l c  -1 (3.18) 

where a, b, and e may be operators. Equation (3.18) is useful for the sym- 
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metrized form of the last term of (3.16). The application of (3.18) to (3.16) 
results in 

.(2,m = ( I -1~ , ,  1-14a~) cgc~e/Oy u 

+ lira (I-lq~,,  (c~, _ vu 8a,)(z + I ) - z  
z ~ O +  

X {(a/Oya)~B y -- ~By~ba + J,[I-I~B,, ~ba]}) 

+ �89 Js[I-~4e,, I-*4uk]) (3.19) 

Using the identity 

(z + I)-~&[(z + 1)-*h, 6~1 

Oh 
=fo*-~ya fo ( z  + I) -xh -- (z + I ) -X-~a  + (z + I)-~bah (3.20) 

in the second term of (3.19) gives 

o~i,Bl,t~k 

+ (I-  lq~a,, (c~u _ ve 8au)f# ~(O/c3Ya)foI- ~r 

+ �89 ~d?,~,, J,[I- xdpei, I -  *q~u~]) (3.21) 

The results (3.13), (3.15), and (3.21) are indeed identical to the expres- 
sions for the transport coefficients obtained from the Boltzmann equation, 
as is proved in Appendix A. In summary, evaluation of the time correlation 
function expressions for the transport coefficients in the Boltzmann limit 
yields agreement with Boltzmann kinetic theory, up to and including 
nonlinear Burnett order. 

3.2. Far f r o m  Equi l ibr ium 

Returning to the exact result (2.20) for y*, we now consider the case 
where no restrictions are placed on the magnitudes of ~y~/&. The Boltzmann 
limit for 7,* will then be determined from the corresponding limits of G~,e j 
and H~i.e. The latter correlation functions involve only two phase functions, 
but they are averaged over a local rather than strict equilibrium ensemble 
so that, as with the nonlinear Burnett coefficients in (3.4), the usual time 
correlation function analysis does not apply. 

To obtain the low-density (actually Boltzmann) limit for G~f,B j and 
H~.~, a procedure paralleling the cluster expansions of Green (15) and 
Cohen <16) will be used. As noted above [Eq. (3.10)], the fluxes ~i(r,  t), q~, 
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and ~, for a simple fluid are sums of single-particle or two-particle functions. 
Consider first G~i,ej. Substituting (3.10) into Eq. (2.2l) gives 

G~l,~:(r, r'; t, -r) = n f dxl ~ , , ( x l )~ ) (x l ;  t, .r) 

+ n 2 f d x l  dx2 ~,(x l  -<2, ,) (3.22) , x2)CbBj (xl,  x2; t, 

where the r, t dependence of qg(x~), q~(x~, x2), and r has been suppressed, 
and di,}~](xl .... , x~; t, r) is defined by 

s ~ ( s )  . ~ . )  n ~r .... xs, t, 

f - ~ (N - s)! h a~ dx~+~ ... dxN e-C~t- '~,(r,  -)PL(~-) (3.23) 
N > S  

This expression is still exact. However, in the Boltzmann limit the second 
term on the right side of  Eq. (3.22) contributes to higher order in the density 
than the first, and may be neglected. Similarly, the contributions from the 
pair function ~(x~, xo,) to all ~)("~ may also be neglected as contributing to 
higher order in the density [this may be seen by considering Eq. (3.23) at 
t = ~-]. Correlation functions of the type (3.22) therefore reduce in the 
low-density limit to the calculation of 

G~,,,j(r, r'; t, -c) -+ n ( dxl r ; t, r) 

N~>s 1 f dXN e_L(t_~)FL(,) ~ ~M(Xo) --+ (N - s)! h 3N dx~+l ... 

The set of functions ~,<~> obey the BBGKY hierarchy with specified initial 
conditions. The first equation of  the hierarchy may be used as the basis for 
obtaining a low-density kinetic equation for ~)~>, whose solution would then 
determine the correlation functions. The determination of kinetic equations 
from the BBGKY hierarchy for conditions of low density is perhaps most 
easily accomplished through the cluster expansions of Green ~15~ and Cohen. C~6~ 
For the purpose of  making a cluster expansion, it is useful to introduce a 
modified local equilibrium distribution function, 

F L ( t , A ) - = e x p - { Q ( t [ A ) -  f d r  lYe(r, t)~b~(r)- A~,(r, t ) ~  Ca,(x~)]} 

(3.24) 

Q(t]),) is again chosen to normalize Fr~(t]A). The functions ),~,(r, t) are 
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arNtrary, aside from providing the existence of the integrals indicated. A 
set of reduced distribution functions similar to the =~g(~ may be defined, 

f fi~'(xz ..... x,; t, r) = ~ (N  - s)! h aN dx,+~ ... dxN e-Ut-~'FL(rll) 
N > S  

(3.25) 
The functions ~(s) andf[S~ are related by 

sff~(~)t~ r) 3f(a~(xl ..... x~; t, r) i (3.26) 
n '~est-'l ,..., x~; t, = 3,~Bs(r, r) x=o 

Therefore, a kinetic equation for f~l~ may be used to generate one for ~(z~. 
It may be noted at this point that aside from the dependence on ,~ the f(a s) 
are essentially the reduced distribution functions for the Liouville equation 
with local equilibrium at t = ~-. Thus f~l~ may be expected to satisfy a 
kinetic equation like the nonlinear Boltzmann equation, for low density. 

Differentiating f~z~ with respect to time shows that it satisfies the first 
equation of the BBGKY hierarchy, (16) 

(~/Ot + v. V)f~ ~ = f dx2 0~2f7 ~ (3.27) 

where 0~2 = -F~2.V~ 2 and F~2 is the force on particle 1 due to particle 2. 
Also, the initial conditions are, 

j f~s)(t, ~')]t=~ =- ~,  (N - s)I h aN dxs+~ ... dxN FL(~-IA) (3.28) 
N > 8  

This hierarchy is of the type considered by Green aS~ and Cohen (~6~ using a 
cluster expansion; the kinetic equation for fi~) is obtained from Eq. (3.27) 
by formally expressing f~2) as a functional o f f l  z> and expanding the func- 
tional in density holding f~> constant. In addition, the low-density form 
simplifies considerably in the Boltzmann limit of t -  ~" >> r ~ -  typical 
binary collision time, and neglect of variations of the space dependence of 

f ~  over the force range. The details are carried out in Appendix B, with 
the result 

f d x 2 0 ~ f 7  ~ -+ J[f~) , f (a ~)1 (3.29) 

where J[ f~ ) , f~ ) ]  is the usual nonlinear Boltzmann collision operator, 

J J m 

The tildes denote a dependence of the function on the restituting momenta. 
The kinetic equation for f~  ~) is therefore, in the low-density limit, 

(e/et + v .V)f l  ~) = a[ f i~ ) , f l  ~)1 (3.30) 
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The initial condition for Eq. (3.30) is obtained from the low-density limit 
of Eq. (3.25) for s = 1 : 

f~t)( t, ~')1~=~ =/L0-,  )') (3.31) 

i.e., the distribution function at time t = T is the single-particle local 
equilibrium distribution function, aside from the dependence on ~: 

fL(r, h ) =  exp - (q ( - c ,  ~)+ far [y.(r, z)r r [ x ~ ) -  h~(r, ~-)~.~(r, rlxz)]} 

(3.32) 

Here ~b,(r, tlx~) and ff~(r, t[x~) are the single-particle functions associated 
with ~ and ~,~, respectively, [see Eq. (3.12)] and q(7, h) is a normalization 
constant. 

The kinetic equation for O(~)(r; t, ~) now follows from Eqs. (3.30) and 
(3.31) using Eq. (3.26), 

(8/8t + v.V)O~ ~ = Y [ O ~ , f ]  (3.33) 

where J is the symmetric form associated with J, 

Y[A, B] =- J[A, B] + J[B, A] (3.34) 

and f ( t ,  -r) satisfies the usual nonlinear Boltzmann equation, 

(8/8t + v . V ) f  = S[ f , f ]  (3.35) 

The initial conditions for these equations are 

ff)~'(r; t, *)It=. = qg.,(r, *lx~)A(*) 
(3.36) 

f ( t ,  ~')l,=~ = A(z) ~ A0-, h)]a=0 

The correlation function G,~.By(r, r '; t, z) is therefore given by 

G,,,~s(r, r , t, -c) n f " = dx~ ~ ( r ,  t[x~)(I)zj (r~(~) ", t, ~-[x~) (3.37) 

with ~'B;~(1) determined by the pair of equations (3.33) and (3.35). 
The determination of the correlation function H is entirely analogous, 

with only the initial conditions changing, 

t. ~ f 
H~.a(r, r ,  t, ~) dxl 6,~(r, tlx0E~t'(r'; t, ~'lx~) (3.38) 

where 

(8/8t + v.V)E~ 1> = Y[E~I),f] 

E~l'(r'; t, zlxl)lt=~ = ~(r ' ,  z[xl)A(z) 
(3.39) 
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andfaga in  satisfies Eq. (3.35). Also, ~,(r', rjxl) is the single-particle function 
corresponding to ~(r ' ,  ~-). In summary, the low-density Boltzmann limit for 
the general nonlinear irreversible fluxes is given by Eq. (2.20) with cor- 
relation functions replaced by Eqs. (3.37) and (3.38). 

For linear transportf( t ,  ~-) may be replaced by the equilibrium distribu- 
t ionfo,  and Eqs. (3.33) and (3.39) reduce to the linearized Boltzmann equa- 
tion. The correlation functions then become special cases of Eq. (3.5). As 
mentioned above, the linearized Boltzmann equation has been used exten- 
sively to study linear response generally, in addition to the analysis of  the 
Green-Kubo expressions for the transport coefficients discussed in Section 
3.1. For the general nonlinear case it is difficult to reduce the results further. 
However, it is straightforward to show that these results are indeed equivalent 
to those obtained by the kinetic theory method based on the nonlinear 
Boltzmann equation. To do so, it is first convenient to rewrite the results 
(2.20), (3.37), and (3.38) in an abbreviated notation, 

f ~,*,(r, t) = n dxl ~,(r,  t]xl) dr X(t, fix1) (3.40) 

where 

X(t, fix 0 =- dr[ . ~  , t, r[xz) + 

(3.41) 

and Eqs. (3.33) and (3.39) imply 

(O/St + v.V)X(t, Tlxl) = J[f(t, .r), X(t, ~-)] (3.42) 

X(t, t]xl) = j dr f ~Y" (r, t)q~i(r, tlxz) + ~y*~ (r, t)~,(r,  tlxl)}fz(t ) 

(3.43) 

It is convenient to further simplify the expression (3.43) for the initial value 
of  X. To do so, consider the material derivative of  the local equilibrium 
distribution function [see Eq. (3.32) for h = 0], 

+ + j d,. I-U:(r, ') [ ~  r t]xO 

OY~(r' t) vir tlxl)] } (3.44) 
+ ~r-----~. 

The term ~q(t)/~t may be evaluated using the normalization condition 

expq(t) = f dxl e x p { - f  dr y~(r, t)r tlxl)} 
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to give 

8q(t) - - f  dr aye(r, t) 8t = 8t <~b~; t)L (3.45) 

(we use the same notation for local equilibrium average here as in Section 2, 
although here it is understood to be the low-density limit). Furthermore, the 
time derivative aye~at may be eliminated using the conservation laws (2.13) 
(with all averages being understood as their low-density limits), 

aye(r, t) f aye(r', t) f dr' g~l(r, r') aT~'(r" t) ~------/~ + dr' K~(r, r') ~r~' = ar=' (3.46) 

Finally, then, substitution of (3.45) and (3.46) into (3.44) gives 

(~t + v . V ) f L ( t ) = - ~ d r ( ~ ~ ( r , t [ x O  

ay*,(r, t) ) 
+ Or'--'-~-- ~,(r, tlxl ) fz(t) 

Comparison with Eq. (3.43) gives the desired result, 

X(t, tlxl ) = -(a/at  + v.V)fz (3.47) 

This result will prove useful in comparing Eq. (3.40) with the corresponding 
expression based on the usual Boltzmann kinetic theory. 

The object now is to show that the solution to the nonlinear Boltzmann 
equation for initial local equilibrium is equivalent to (3.40)-(3.43). Let 
f ( t ,  0) be the single-particle phase-space probability density satisfying the 
Boltzmann equation with the local equilibrium distribution specified at 
t = 0 ,  

(a[~t + v.V)f  = J[f , f] ,  f(0, 0) =-- fz(0). (3.48) 

Let A(t, 0) denote the deviation from local equilibrium at time t, 

A(t, O) --- f( t ,  0) -- f~(t) (3.49) 

Then the irreversible fluxes are given by 

t)]mnouc = f dxl ~,(r, tlxl)A(t, 0) (3.50) [~,*,(r, 

Since ~(t, 0) vanishes at t = 0, we may look for solutions of the form 

f2 A(t, O) = dr Y(t, ~'lxl) (3.51) 
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Substitution of (3.49) and (3.51) back into the Boltzmann equation 
requires 

d~- + v.V Y(t, r) - Y[fL(t), Y(t, r)] - d r ' J [ Y ( t ,  z'), Y(t, r)] 

= X(t ,  t]x~) - Y(t, t[xO (3.52) 

Here, Eq. (3.47) has been used to identify the right side of Eq. (3.52). The 
third term on the left side of (3.52) may be rewritten 

- dr dr' J[ Y(t, r'), Y(t, r) ]  --- - dr dr'  J [  Y(t, r'), Y(t, r) ]  
~'0 vO 

= - d~ d r ' J [ Y ( t , r ' ) ,  Y( t , r )]  

= - dr J[(f( t ,  r) - fL(t)), Y(t, r)] 

(3.53) 

with 

Y(t, t lxl) = X(t ,  tIxl) (3.56) 

But it is now clear that Eqs. (3.55) and (3.42) are the same first-order dif- 
ferential equations with the same initial conditions. Therefore the solutions 
are the same, i.e., 

r ( t ,  f i x 0  = x(t, fix1) 

and consequent/y, through (3.40) and (3.50), 

[7*~(r, t)],:Jne~o = [7*~(r, t)]corre,atlon ~unotio~ (3.57) 

as was to be proved. 

where use has been made of (3.49) and (3.51) in the form 

f; A(t, r) =-f( t ,  r) - f L ( t )  = dr' Y(t, T') 

Substitution of (3.53) into (3.52) gives the conditions that Y must satisfy 
in order that (3.51) yield a solution to the Boltzmann equation 

f f  d~ {(8lOt + v.V) Y(t, - r)]} = X(t,  tlx~ ) - Y(t, t[x~) 7") J[ f ( t ,  r)~ Y(t, 

(3.54) 

Since Y is otherwise arbitrary, Eq. (3.54) is satisfied if Y is chosen to be the 
solution to 

(~/Ot + v.V)Y = J[ f ( t ,  r), Y] (3.55) 
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3.3. Projection Operator Formulation of the Boltzmann Limit 

The corresponding low-density limit of the projection form for 9'*~ in 
the correlation function method, Eq. (2.32), is not as easy to obtain directly. 
However, the Boltzmann limit obtained above [e.g., Eqs. (3.40)-(3.43)] may 
be put in the form of the projection operator result and the corresponding 
Boltzmann limit for C~.Bj(r, r '; t, r) identifed. First, a single-particle 
projection operator, analogous to Pt, is defined by 

P,a(x,) = far  o(r, tlx,) f ax,' f (t)g,o(r, ,Ix;),,(x;) (3.58) 

Use of (3.58) in (3.41) leads to 

X(t, ~',xl) = T(t, r)[f LI('r)P~*v.VA('c, 0)+ f dr ~ri (r, ~-)fL(~-)q~,(r, ~-Ixl)] 

(3.59) 

where T is the linear solution operator to Eq. (3.42) (for fixed f )  

(a/at + v.~7)T(t, ~-) = J [ f ( t ,  r), T(t, ~-)], T(t, t) = 1 (3.60) 

and P~* =-fL(z)P~fE ~(r). Integrating (3.59) gives 

• o) = d-~ r ( t ,  , )  f~(~-)P~*v.VA(% O) 

+ a t - - ( r ,  ,)f~(~-)~(r, ,[x~) (3.61) 

o r  

[~'~t + (1-- Pt*)v'V]A(t,O) 

= Y[fz, A(t, 0)] 

f 0y~(r, + Y[A(t, 0), iX(t, 0)] + dr ar, t)fL(t)~'(r' tlxl) (3.62) 

Since/x(t, 0) = 0 at t = 0, consider solutions of the form 

f~ f aY~(r' t) cb'~,(r, t, "r[xl) (3.63) A(t, O) = dr dr ~3rt 

Substitution of (3.63) into (3.62) and use of a property analogous to (3.53) 
leads to the requirement that ~'~ satisfy 

[a/at + (1 - et*)v.~7]qb;,(r, t, ~-Ixl) = J[f(t, -r), ~;,(r, t, ~-lxl)] 

with the initial condition 

qb~i(r, t, tlxl ) = q~,,(r, tlxl)fL(t) 

(3.64) 

(3.65) 
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and f ( t ,  ~') again satisfies the nonlinear Boltzmann equation (3.35). The 
irreversible fluxes are now given by Eqs. (3.40) and (3.63), 

y*~(r, t) = dr dr' C~,ej(r, r'" t, .c) 8YB(r'-z--7 r) 
' c~rj 

(3.66) 

with 

/ ,  
r .  ! t t C~,,~j(r, r ,  t, r) -- ) dxl ~,(r,  t l x0%j ( r ,  t, fiX1) (3.67) 

and (I)~j satisfies the modified kinetic equation (3.64). The results (3.66) and 
(3.67) provide the desired Boltzmann limit of the correlation function formu- 
lation in projection operator form. For  linear transport, Eq. (3.64) becomes 
the modified linearized Boltzmann equation, 

[8/8t + (1 - Pt*)v.V]q~'~ = Js[qS'~,f0] = - I [ ~ ]  (3.68) 

where /[.-.] denotes the linearized Boltzmann collision operator. This 
equation in conjunction with (3.61) and (3.62) reproduces the "generalized 
hydrodynamics" obtained by others (I~ applying projection operator 
techniques to the linearized Boltzmann equation. 

4. STEADY SHEARING FLOW 

To illustrate the form of  the correlation functions and irreversible 
fluxes for highly nonlinear processes the problem of steady shearing flow 
will be considered. The motivation arises from the fact that for Maxwell 
molecules the irreversible momentum flux may be determined exactly from 
the nonlinear Boltzmann equation. Additionally, this problem has been 
reconsidered recently both from molecular dynamics experiments (iv and 
from a more general theoretical point of  view. (7) It appears from the theory 
that coupling of the linear hydrodynamic modes leads to a nonanalytic 
dependence of the flux on the shear rate. Such anomalous behavior is not 
predicted by the nonlinear Boltzmann equation and will not be discussed 
here. However, it should be useful to have the Boltzmann results for the 
correlation functions as a reference for discussion of the mode coupling 
results. 5 

To define the problem, consider the macroscopic conservation laws, 

s The mode coupling calculations of Ref. 7 yield only the lowest order corrections to 
the Navier-Stokes transport for asymptotically small shear rate. It may well be that 
for finite shear rate the regular (analytic) part of the stress tensor dominates the mode 
coupling anomalies. The computer experiments to study mode coupling effects would 
need to subtract out such Boltzmann-like results. 
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Eq. (2.11). For a simple one-component fluid, the local equilibrium averages 
of Eqs. (2.2) and (2.3) lead to 

(Ca; t)L ~ (~, i + �89 2, ftu,) 

(7~; t ) L ~  (~u,, [h + �89 P~j + ~u, u3 

where /5 and ~ are the average mass and internal energy densities, P is the 
pressure, and h ~ i + P is the enthalpy density. With these results, Eqs. 
(2.11) become 

0--7 + V.(fiU) = 0 (4.1) 

o2 8t + U.~7~ + hV.U = - V . q *  - t*. ~Ui (4.2) cnr~ 

9U, 1 9P 1 cgt~ (4.3) 
0-7 + U.VU, + ~ Or---~ - - f i  ~r-~. 

Here, q** =- s~* - Uj t*  is the irreversible heat flux. The steady shear flow 
corresponds physically to a fluid in steady state between two parallel plates 
at a fixed distance apart and in relative motion. The flow field is expected to 
vary linearly between the plates (except perhaps near the surface) and be 
of the form 

U~(r, t )  = Uo~ + a~jrj (4.4) 

The constant vector U0~ and constant tensor a~j are the velocity of the lower 
plate and the shear rate tensor, respectively. In the following U0~ will be set 
equal to zero without loss of generality. The system is otherwise assumed 
to be spatially homogeneous, i.e., 

fi(r, t) = ~(t) ,  q*(r, t)  = q*(t)  
(4.5) 

i(r,  t) = i( t) ,  t~(r, t) = t~ ( t )  

With these conditions, the conservation laws (4.1)-(4.3) become 

aft /at  = O, Oi]~t  = - a j * .  

and fi is also a constant. It is consistent with the conservation laws, therefore, 
to look for  the irreversible fluxes under the conditions, 

U,(r, t) = a,jrj ,  ft(r, t )  = fto, if(r, t )  = i ( t )  

q*(r, t)  -~ q*(t) ,  t*.(r, t) = t*(t) (4.6) 

Since the energy density ~ may be considered a function of t~ and the tem- 
perature T = 1/kfi ,  the only conservation law is 

~f i ( t ) /~t  = - - a i j a ( t ) t * ( t )  (4.7) 

where c, - (0fl/0~)z. 
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To prepare the system, let external forces and sources be present such 
as to maintain a steady shear rate but at fixed temperature. Consequently 
t*(t < 0) = 0. At t = 0 all sources are removed except those surface forces 
required to maintain the conditions (4.6) and (4.7), sufficiently far from the 
surfaces. The corresponding initial local equilibrium ensemble is then 

FL(0) = exp[--Q(0) - fl(0)H' + ~(0)N] (4.8) 

where Q(0) is a normalization constant, and H '  is 

H '= -  H({p~ - mU(q.)}) = H({p~ - ma~jq,~j}) (4.9) 

More generally, in the following any phase function with a prime is defined 
as the corresponding unprimed function with p~ replaced by p~ - mU(q~), 

X ' =  X({p~ - mU(q.)}) (4.10) 

The formal solutions of Section 2 cannot be directly applied since they were 
derived for an isolated system, whereas here the surfaces forces are required 
for steady flows. However, if one repeats these derivations retaining the 
effects of surface forces, the solutions are similar to those of Section 2. The 
resulting irreversible fluxes ~,*{(r, t) are again characterized by time cor- 
relation functions at two different space points. If the argument r of ~*{(r, t) 
is chosen well away from the boundaries, it is reasonable to expect that the 
correlation with the surfaces is negligibly small. This does not mean that 
the boundary conditions are unimportant, but instead that they are largely 
incorporated in the thermodynamic parameters, rather than explicitly through 
the correlation functions; it is plausible, then, that Eq. (2.20) should still 
hold, for points away from the surfaces. For the conditions (4.6) and (4.7) 
the irreversible momentum flux is (see Appendix D) 

t $ ( t )  = -a~,  d ,  [a,jk,(t, ,)  + H,j(t, ~-)t~*,0-)] (4.11) 

with 

Gijk~(t, r) = fi(r)([eL(t-')t'j(r)]Ts r)L 

aft n [(H' - ( H ' ;  r}L) H~j(t, "c) -- [eUt-~ ~-~ L 

- m ~ L ( N - < N ;  ~'>L)]; r ~ L  (4.12) 

The phase functions in Eq. (4.12) are the local momentum flux hi(r) and its 
volume integral T~j. Also, n is the number density, fi/m. Equation (4.11) 
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with (4.12) is still exact for the conditions specified above. For small shear 
rate the term with H u vanishes to order a 2, leaving 

f2 t*(t) = -ak~ dr Gu~(t, -r) (4.13) 

A pseudo-Galilean transformation, introduced by Yamada and Kawasaki, (v 

p~' = p~ - mU(q~) (4.14) 

may be used to reduce Gukz(t, ~) to an equilibrium-like correlation function, 

Gu~z(t, r) =/3(r)([{exp[L(t - r)]}tu(r)]Tkz;/3(~-)) (4.15) 

with 

L = L + L', L' = a u ~--1= q"j c~q,~-- - p"j (4.16) 

This result is similar to that defining the shear viscosity in linear transport, 
with the additional nonlinear dependence on shear rate occurring only 
through the modified L. Due to the neglect of the H u contribution, Eq. (4.13) 
is only reliable to order less than a 2, but is adequate for the investigation of 
a possible dependence of the stress tensor on fractional powers of  the shear 
rate. (7~ The correlation function (4.15) may be amenable to a molecular 
dynamics analysis to test the mode coupling predictions for small shear 
rate. However, as the concern here is with the Boltzmann limit, no further 
consideration of Eqs. (4.13) and (4.15) will be made. 

Returning to the exact expression, Eqs. (4.1 l) and (4.12), the Boltzmann 
limit of G,sk~ and H~j is defined by the results of Section 3. Consider first 
Gukz(t, ,). Using Eq. (3.37), G,jkz is given by 

f d x l S ( r  , , -(17 Guel( t, "I") = nm - qz)vl,va;~kz (t, rive') (4.17) 

where v~ = v l ~ -  U~(ql) and it has been observed that the q dependence 
of/~(1~ -~kz occurs through U. Further, ~ is determined from Eqs. (3.33) and 
(3.35), 

(t3/c3t + v . V ) ~ ]  ~ = Y[~]~,f l  (4.18) 

( e / e t +  v . V ) f  = J[f ,  f l  (4.19) 

with the initial conditions, (3.36), 

n ~ ' ( t ,  ~')[t=~ = mfl('c)(vi~vl, - �89 vl') (4.20) 

Here fo(Ig(t), v') is the Maxwell-Boltzmann distribution as a function of 
/3(t) and v'. Equations (4.17)-(4.19) may be solved exactly to determine 
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G,jk~ for the special case of the Maxwell force law IF(r) ~ f:[rS]. As noted 
above, the direct determination of t*- from the nonlinear Boltzmann equa- 
tion for this case has been given by Ikenberry and TruesdellJ .1> The analysis 
of the correlation functions G~jkz and H~j follows essentially the analysis of 
Ikenberry and Truesdell, and is given in Appendix C, where it is shown 
that G~j~ and H~ are determined from 

Gm]tcz 

with the initial conditions 

r)lt=~ = t9 f dv  m2v,vj(v~v, - �89 v) G~m(t, 

= ~ 3~, 8jk + 8,~ 8j, - ~ 8~; 8k, (4.22) 

and 

(, 
= - 28ij (4.23) 

It is now straightforward to solve Eqs. (4.21); however, for illustration it is 
sufficient to limit attention to determination of t * ,  taking a~j = a 3,x 8j~. 
The relevant equations are then 

9 + Gxyxu + ( H ~ )  =_ 0 

\H!1111 
which give 

Hx~(t,  r) = 2a(t  - r)e  -~(t-*) 

Gxuxu(t, r) = nf l -~e  -~(~-') 

(4.24) 

(4.25) 

Use of these results in (4.11) gives 

fo' t*~(t) = - a  dr  e-~(~-~)P(r) - dr  (t - r ' e - ~ " - m a 2 t  * (r~ 

(4.26) 

where P( t )  is the pressure. Alternatively, solving Eq. (3.64) gives the equivalent 
projection operator form, 

t*y(t) = - a  dr {e-  ~" -'~ c o s [ ( D ' ~ a ( t  - ~9]}P(~) (4.27) 
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Although nonlocal in time, Eq. (4.26) or (4.27) gives the necessary constitutive 
equation to make the conservation law (4.7), 

OP(t )[Ot = - 2at*~(t ) (4.28) 

a closed deterministic equation in terms of the pressure, 

fo' OP( t ) [~ t  = 3Za 2 &- {e-~(t-,~ cos[(Z)ll2a(t _ r)]}p(~.) (4.29) 

Clearly, the pressure increases with time (due to viscous heating). The solu- 
tion to this equation and the corresponding expression for t*~ have been 
discussed by Ikenberry and Truesdell and will not be repeated here. Newton's 
viscosity law is regained in the limits t >> ~- ~ and a << v, 

t*~( t ) -+  - ~a (4.30) 

where the viscosity *7 is the familiar result for Maxwell molecules 

= v - ~ e ( t )  (4.31) 

5. D I S C U S S I O N  

The correlation function expressions for the transport coefficients 
through nonlinear Burnett order have been shown to agree with those 
obtained from the Chapman-Enskog solution to the nonlinear Boltzmann 
kinetic equation, in the appropriate limit. This agreement w/as" also shown 
to be quite general, independent of small gradient expansiong, by indicating 
that the nonlocal correlation function expression for the irreversible fluxes 
also agrees with kinetic theory in the appropriate limit. This correspondence 
also provides some insight into the structure of the local equilibrium cor- 
relation functions characterizing states far from equilibrium, and may be of 
some use in modeling such correlation functions for more general fluids 
than dilute gases. In particular, the relationship of the equations for the 
correlation functions to the nonlinear Boltzmann equation permits applica- 
tion of the substantial literature from gas dynamics on states far from 
equilibriumJ TM One example of this is provided in Section 4, where the cor- 
relation functions for steady shear flow were evaluated directly from knowl- 
edge of the corresponding solution to the nonlinear Boltzmann equation. 
It is interesting to speculate on how the results of Section 4 might suggest 
modeling shear flow in, for example, liquid argon. The Maxwell molecules 
calculation reduces ultimately to a single relaxation time model for the 
correlation functions. It is not unreasonable to expect such a model of the 
time dependence to be approximately correct more generally, with perhaps 
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a different value for the relaxation time v -1. In this case the correlation 
functions in (4.12) become 

G.~y(t,  r) = G,yx~(r, r)e -v(t-*' (5.1) 

Hxu(t, r) = H~(r ,  r)a(t - r)e -~(t-~ (5.2) 

The functions Gxyxu(r, r) and Hvy(r, r) are equilibrium-like averages whose 
r dependence arises only through/3(r). In particular, 

ax~x~(T, , )  = ( / 3 / v ) ( r L ; / 3 ( T ) ) o  = G~(/3(~)) (5.3) 

Hyy(r, r) = - (aP/a~/)l,(/g(r)) (5.4) 

Here G~(/3(r)) is the high-frequency shear viscosity discussed by Zwanzig 
and Mountain/lm and Vis the volume. The irreversible stress tensor, general- 
izing Eq. (4.26), is therefore 

t*y( f i ( t ) )=-af2dr[e-V~-~'Goo(~(r))  

+ a-?-u l a(t - r)e-~t-*)t*y(/3(r)) ] (5.5) 

At low density (aP/aa)J= is independent of/3; if more generally the r depen- 
dence of (aP/#a)l. is weak compared to that of t*y(/3(r)), then the above 
equation may be solved by Laplace transformation to give 

~*~(z) = - a  C~(z)/(~ + z) 
1 + (aP/a~)l,[a/(v + z)] 2 (5.6) 

where the tilde denotes Laplace transformation. For small shear rate this 
reduces to 

T*~(z) --+ - ar?(z)/z (5.7) 

where r~(z) is the frequency-dependent shear viscosity, identified as 

~(z) : G~/(z + .) (5.8) 

Here G~o- G~o(fi(O)). This identification may be used to determine the 
relaxation time v-~, and t*u rewritten 

f L ( z )  = - a C ~ ( z )  ~(z) 
G~ 1 + (OP/O~)[~[rl(z)a/Go~] 2 (5.9) 

For small z (times large compared to v-1), ~7(z) may be replaced by ~/=- :7(0) 
and the transform inverted to give 

~(5(t)) (5.10) t*~u(t ) 7 - a  1 + (aP/O~)I~(wa/G~) = 
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with ~7(fi(t)) = ~[G~(fi(t))/G~]. For a Lennard-Jones fluid such as argon G~ 
is determined entirely from thermodynamic properties, r 

Go~ = 3P + ( 2 6 1 5 ) n k T -  (24[5)n~ (5.11) 

so that the above model for t*y(t) has no adjustable parameters. Unfortu- 
nately, it is not possible to compare directly with the molecular dynamics 
results of Ashurst and Hoover, (17) since in the latter, heat is removed at the 
walls, whereas here Go~(fi(r)) increases without bound due to the increasing 
temperature from viscous heating. A more general treatment of the kinetic 
theory incorporating heat loss at the boundaries, however, could presumably 
be modeled in the manner described above to permit a reasonable com- 
parison with the molecular dynamics data. 

As mentioned in the introduction and in Section 4, mode coupling 
effects are expected to contribute a nonanalytic dependence on the thermo- 
dynamic forces not incorporated in the above kinetic models. Such effects 
have been discussed recently from a kinetic theory generalizing the non- 
linear Boltzmann equation to include mode coupling. (7) Although the 
situation is somewhat more complicated than in the Boltzrnann case, it 
may be expected that the correspondence between such a kinetic theory 
and the correlation function formulation could be worked out along the 
lines described here. 

A P P E N D I X  A. C H A P M A N - E N S K O G  S O L U T I O N  TO THE 
B O L T Z M A N N  E Q U A T I O N  

In this appendix the usual Chapman-Enskog expansion for the normal 
solution to the Boltzmann equation is carried out to Burnett order in a 
form suitable for comparison with the correlation function results of Section 
3. The nonlinear Boltzmann equation is 

m . V f  = J [ f , f ]  (A.1) 

where J [ f , f ]  is the nonlinear Boltzmann operator. The solution to (A.1) 
may be expressed in terms of the deviation from local equilibrium 

f = fL(1 + h) (A.2) 

wherefL is the one-particle local equilibrium distribution 

fL -= exp [ -q ( t )  -- ~h,(p)y~(q, t)] (A.3) 

Here, the y ,  are the same thermodynamic variables as in Eq. (2.10), and the 
r are the single-particle functions of p corresponding to the N-particle 
densities of Eq. (2.2) [see Eqs. (3.10) and (3.12)], 

r ~ (m, p2/2rn, p,) (A.4) 
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Substitution of (A.3) into (A.1) gives 

-~ + m + I h = 72 &[h, hl + (1 + h) ~b, + Y,~ ~--~q~] (1.5) 

Here I and Js are defined by Eq. (3.9), and 7~(P) is the single-particle current 
associated with ~b~(p), 

y~ = (p/m)~b~(p) (A.6) 

The macroscopic conservation laws, analogous to Eq. (2.13), follow from 
the fact that the ~b, are summational invariants, 

where ~ = f dr' g.e(r, r') and otherwise the notation is the same as that 
of the text. Use of (A.7) to eliminate the time derivative in (A.5) gives 

(O~ P.V ) ~ \l ~c~Y" c07"~c3q,, (A.8) + + h = a l e ,  hi + (1 + + e. 
m 

with 

(fi.,(P) ~ Y,~i(P) - ~a(p)c~., ~(p) -- ~b~(p)~7. ~ 

The irreversible fluxes 7"~ defined by Eq. (2.12) are 

=-- f @r.,(P)(f -- = f @ fLT ,h 

(A.9) 

The definition (2.7) of the thermodynamic parameters in fL implies that h 
must be orthogonal to the ~b~ 

f dpA~b.h --- (A.11) 0 

so Eq. (A.10) may be expressed in the more convenient form, using (A.9) 

7"~, = f dpAi~.,h (A.~2) 

The Chapman-Enskog solution to (A.8) may be described as follows. A 
solution (the normal solution) is sought such that h depends on q, t only 
through y~(q, t) and their derivatives. Furthermore, since the time deriva- 
tives may be eliminated using (A.7), the solution may be characterized by 

(A.10) 
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y~(q, t) and their space derivatives. The Chapman-Enskog solution is an 
expansion of the normal solution in the space derivatives, assuming con- 
vergence for smoothly varying y~(q, t). To set up the expansion, (A.8) may 
be rewritten 

ay~ arz,] l 
Ih = (1 + h) ~,~,-~ + ~ --~q~ ] + -~ J,[h, hl - Dth (A.13) 

Here Dth - [O/St + (p/m).V]h is the material derivative of h treating y 
and the space derivatives of y as independent variables, i.e., 

Dth = ~ ~ + v ' V  y ,  + O(ay,/aq~) ~t + v ' V  ~ +. . .  (A.14) 

The time derivatives in (A.14) may then be eliminated by (A.7), yielding an 
expression in terms of the space derivatives only. Equation (A.13) may 
therefore be solved perturbatively, treating gradients ofy~ as small. Formally 
this is accomplished by introducing a uniformity parameter, say e, as a 
factor of each gradient operator O/~q~. Then h is assumed to have the form 

h = Eh (~) + eZh (2) + " ' -  (A.15) 

The irreversible flux y*~ has a similar expansion generated by (A.IO), 

~,*~ = ~ ~"[r*,] (~), [y*,](") = (~ , ,  h (")) (A.16) 
r~=]_ 

The lower order contributions to h and hence y*~ are easily identified from 
Eq. (A.13): 

Navier-Stokes order: To first order in Oy,/Sq, Eq. (A.13) gives 

Ihm = g~i Oy,/Oq~ 

Using the requirement that h m be orthogonal to the ~b,, a unique solution 
is obtained, 

(A.17) 

The Navier-Stokes-order irreversible flux is then 

[r*d m - / dp f0 (P )~ . ,  hm (1) ~ = r~,eJ YB/ qJ (A.18) 
J 

where the transport coefficients r~,~J "(~) are identified as 

/ ~  = ( ,b . , , / -  ~eJ) (A.19) ai,BJ 
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Burnett order." The second-order contributions to Eq. (A.13) are 

ih(2 > = h(:),h~.~., ~y~oq~ + ~: O[~,*i] (:~q_._._~ + 1 j~[h(:~, h(:~ ] 

+ - m aq J 

+ [~'~(I-:'~'~i)] ~Y'~ ( - P' 3B~') ~qy 

( ( _ _ ~ . ] ~ 2 y ~  
h (~) = I-  : (I- :~,~) c~ a m ~a] Oq~ eq~ 

I l 

~/_:,~, c'~ [ ~_~_~ ]( p~ ~ . )}  

e[~:,]<:'] Oy~ 8y~ + ~ (A.20) x ~q---~ ~q--~. ~ ] 

The Burnett contribution to the irreversible fluxes is 

[7"~](~> = p~ ~2y. 
((~a,, 1- 26a,[e~u - m 3aa])c~q, 8q~ 
+((~,,I-:[~uk(I-:~Bl) + (e~u P~3uv) 8 (I_:q~j)])8yBOyu 

- m ~ ?q~ eqk 

+ (~,, x-: ~ L[(/- :~), (I- :~.~)]) OyB ~y~ 
3qj- c~qk 

+ (~-~, I-:~B) 9[~'~](:~ (A.21) 0q~ 

The last term in (A.21) vanishes as a consequence of (A.11) and the fact that 
I is self-adjoint, 

(4~, I - : 6 )  = ((I-1~,), 6 )  = 0 

Also, the second term in (A.21) may be rewritten as 

(i-xr (c~ _ Pk t a (foI-:r oyBOyv 
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so that the Burnett-order contribution is 

r,,,~Je ~ + (A.22) 

where the linear and nonlinear transport coefficients are identified as, 
respectively, 

~,,BJ'e = 14"" (I-l~"J) cu~ -- m 

~i,as,uk 0ya 

( 1 (i_~.~)1) + ~ I-~"' '  i Js[(/-~r 

The results (A.19), (A.23), and (A.24) agree with the corresponding results, 
(3.13), (3.15), and (3.21), obtained from the correlation function expressions. 

A P P E N D I X  B. KINETIC E Q U A T I O N  FOR LOCAL E Q U I L I B R I U M  
C O R R E L A T I O N  F U N C T I O N S  

The low-density kinetic equations for the local equilibrium time cor- 
relation functions, Eqs. (3.33) and (3.39), follow from the corresponding 
equation for the generating " "~(s) functionalja  given by Eq. (3.30) 

f(xs~(1 ..... s;t,,)=--N~>sha~e(l_s)!~dxs+l".dXNe-m-~)FL(Tlh) 
(B.1) 

with FL(r] A) defined by 

FL(~[Z) ~ exp(--Q(~-IA) - f dr [y~(r, T)~b.(r)- 2,~,(r, "04,~,(r)]} 

(B.2) 

It is readily verified thatf~ s) satisfies the BBGKY hierarchy, the first equation 
of which is 

~ . V  f(al>(1; ~-) jdx2 012f(a2)(1, 2; t, ~') (B.3) f 
A kinetic equation follows from (B.3) by expressing f(a 2) as a functional of 
f(a 1>. Expansion of this functional to lowest order in the density gives the 
desired equation. The density expansion may be accomplished by means of 
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a cluster expansion which has been studied and discussed in detail else- 
where.(/5,z6~ Consequently only an outline of  the derivation will be given 
here. 

Define the N-particle function F(1 ..... N) by 

..... N )  =- e -L(t-~) e x p ~ - f  dr [y.(r, ~.)r - h.~(r, r)r ~ F(1 
( J ) 

(B.4) 

(B.6) and (B.7) in (B.1): 

f(al)(1 ; t, ~-)= [ U ( 1 ) +  f dxz U(l12) 

f~2)(1, 2; t, r) = [U(1, 2) + f dxa U(1, 

+ i-.]e - e(~x) (B.8) 

2[3) +- . . ]e  -~(~J~) (B.9) 

The cluster functions may be identified from (B.6) and (B.7) by setting 
N = 1, 2 .... successively. The low-order functions are 

: exp[-L(1)( t  - r)] exp~ - f  dr [y~(r, ~-)(,~l)(r) U(1) F(1) 

- A~(r, ~-)~)(r)]} 

U(1, 2) = F(1, 2) = exp[-L(1 ,  2)(t - T)] 

• e x p { - f  d,:[y~(r, ,)(~'~" + 4,~ ~') 

- Z~,(r, T)(~(~p(r) + ~])(r))J~ 
) 

U(l12) = F(12) - F(1)F(2) 

U(1,213 ) = F(123) - r (1 ,  2)F(3) 

and the associated modified cluster functions U(1 ..... sis + 1 ..... l) by 
N 

F(1 ..... N) = ~ 5" U(1 ..... sis + 1 ..... l)F~_z(1 + 1 ..... N )  (B.5) 
I = s  

Here 5f denotes a sum over all ( l -  s)-tuples in the set (s + 1 ..... N). 
Specifically, for s = 1, 2 these expansions are 

F(1 ..... N) = U(1)Fu_I(2 ..... N )  + ~ U(I[i)F~_2(2 ..... N )  +. . .  (B.6) 

and 

F(1 ..... N) = U(1, 2)FN_2(3 ..... N) + ~ U(1, 2ti)FN_3(3,..., N) + ... 
i ~ ,  ,2 r  

(B.7) 

The corresponding expansions for f(z 1) and f(fl) are obtained by substituting 
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Here ~b~ 1~, ~b(, 2) and ~ ,  ~(~]~ are the single-particle and pair functions associated 
with ~b~ and ~,~, respectively [see Eq. (3.10)]. The expansions (B.8) and 
(B.9) may be identified as expansions in the activity, so that to lowest order 
in the density only the leading terms need to be retained. Using the form of 
U(1), Eq. (B.8) may be inverted to give 

exp{-f dr [y~(r, r)~(,1)(r)- ~ ( r ,  r )~)( r ) ]}  

= {exp[L(1)(t-  r)]}[f[l)(l ; t, T) + order n 2] exp[Q(~la)]  

Substitution of this result into U(1, 2) of Eq. (B.9) then gives the desired 
low-density functional 

f(a2)(1, 2; t, r) = e - m ' 2 x t - ~ g ( 1 ,  2)etm)+~(2~(t- ' f(al)(1;t ,  r)f(al)(2; t, r) 

where g(1, 2) is defined by 

g(1, 2)--- e x p ( - f  dr [y,(r, r)~b(~2'(r) - )~(r, r )~)( r ) ]}  

Equation (B. 10) may be simplified by rewriting it as 

f(am(1, 2; t, z) = g(1, 2; t, r)S~t_,(1, 2)f(al'(1 ; t, T)f(~l'(2; t, ,) 

with 

and 

5~t(1, 2) = e-m'mtetm)+L(2)~t 

(B.10) 

and 

f a  ( , 2 ; t ,  ~-t + m " v  z) = dxz  O~25e~f(~l~(1; t, r)fm(2;  t, 

(B.12) 

Further reduction of the right side of Eq. (B.12) to the standard Boltzmann 

~(1, 2; t, ~) = e x p / - - |  dr [y,(r, r){exp[-L(t - z)]}~2)(r) 

- A~,(r, r ) { e x p [ - L ( t  - r)]}~(~]~(r)]) 

For initial configurations, Iql - q~l ~< force range, and for repulsive inter- 
actions, the phase functions e-SCt-~)~b~ m and e-L"-~)~(~] > vanish after times 
t - r large compared to a typical collision time to. Therefore limt_,>>~o ~ --~ 1, 
for Iql - q21 ~< force range, and 

0 S~, c(1)rl" t, r)ftal)(2; t, r) (B.11) lira 012f(am(1,2; t , r )~ 12 ~y~ ~ , 
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form of the text is straightforward and involves the further limitation to 
variations o f f  ~1~ on a spatial scale large compared to the force range. 

A P P E N D I X  C. D E T E R M I N A T I O N  OF G,sk, A N D  H,j FOR 
M A X W E L L  M O L E C U L E S  

In this appendix Eqs. (4.21) are obtained. Consider first Guk,, defined 
by Eq. (4.17), 

*) m f d &  ~(r , , -(1, Gukl(t, = - ql)vl ,vl jek,  (t, *Iv1') (c.1) 

where Okz satisfies the equation 

(8/8t  + v'V)OL~ ) = ot7r~mk, ,JJrl (C.2) 

and f satisfies the nonlinear Boltzmann equation. From (C.2), an equation 
for G~ m follows, 

~u, ~u~ .f - -  = vl,vlsJ[O)kt , f ]  (C.3) Ot G,jkz + ~x~ Grajel + ~Xm Gimkl m _  dr1 ' , - ~ m 

Use has been made of the fact that moments of ~ equal to or higher than 
second order are space independent, as a consequence of the conditions of 
Section 5. Generally Eq. (C.3) is not a closed equation for Gim because of 
the term on the right side. However, for Maxwell molecules, with interatomic 
potential 

V(r )  = eo(e/r) 4 

the right side is simply proportional to Gukz, 

f , , - - m  
m dr1 Vi iVl jJ[Okl , f ]  = --vG~m (C.4) 

where u = 1.23n(3~r/2)c~2(%/m) ~/2. The proof of (C.4) is as follows: 

m .( dv~ v l , v l j Y [ ~  ~, f ]  

= m f dvl dv2 [~ (v l ) f (v2 )  

L + ~)(v2)f(vl)] db b l v l  - vzl de [vlivlj -- vl,vls] 

(c.5) 

where ~ denotes the velocity after collision, and use has been made of the 
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invariance of  the cross section under the t ransformat ion ~--+ v. Define the 
center-of-mass and relative velocities by 

G~ = �89 + v2O, gi = vii - v2i 

Then Eq. (C.5) becomes 

m dv~v~iv.J[r 

= - m  dv~ dv2 [~)(vOf(v2)  + r db bg 

• dE [�89 + Gjgi) + �88 - �89 + G , g i )  - �88 

(c.6) 

Now let gi = g~ cos 0 - aig sin 0, where a is a unit vector or thogonal  to g. 
Then 

f ," r - ~(1) m dvl VliVljJ[@kl,f] 

f dv~ dv2 rff)(1)(v ~rrv ~ ~, ~ . ~  ~ + ~ ; ( v ~ ) / ( v l ) ]  m 

fo f/ • db bg de [�89 + Gigi)(1 - cos 0) 

+ �89 sin O)(Giaj § Gja~) + �88 - cos 2 0) 

- �88 j sin 2 0 + �88 + gja~)g sin 0 cos 0] 

But f~o ~ de ai = 0 f:~ de aiaj = rr(8o- - g~g/g2), so 

f t t -- ~(1) m dvlv~v~jJ[r 

dv~ dv~[~i~(vl)f(v~) + ~)~9(v~)/(vl)] m 
J 

• [�89 + Gjgi)fo ~ 

+ ~(e,gJ - �89 z) fo ~ 

db bg2rr(1 - cos 0) 

db bg sin 2 0] 
J 

For  Maxwell molecules J'o db bgh(O) is independent  o f  the velocities and 
hence a constant.  The term with (G~gj + GjgO = (vlivlj + v l i v 2 j ) -  
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(v2~v2j + v2~v2j) vanishes on change of variables v2 ~ v~ in the second term. 
Thus, 

m ~ dVl  " ' - ~ (~) vl~vzjJ[r , f ]  

= - ~ Tn dv~ av~ [~)(v0f(v~) 

where 

o r  

+ q)(k])(v2)f(vl)l 

1~ ( .  2 - -  2 V l . V 2 ) ]  X [t)liUl. / -~ V2i~72] - -  VI{U2j  - -  /)ljU2i - -  ~- i j kuZ  @- /)2 2 

m; 
= - u -  dr1 dr2 q)~)(v0f(v2) 

n 

x [v~v~j  + v ~ v l j  - v ~ v 2 j  - vljv2~ - �89 2 + v2 2 - 2vz-v2)] 

(C.7) 

v = (3r db  b g  sin 2 0 

v = (3~r/2)n(~2(eo/m)l/21.23 (c.8) 

Equation (C.7) simplifies considerably when it is noted that ~(k})(vl) is orthog- 
onal to 1, v, and v 2 [see Eq. (2.19)]. Integrating over v2 in Eq. (C.7) then 
gives 

P 
midvz , , - ~(1) v1=vl f l [  q~kz , f ]  = - vG~jkz J 

which verifies Eq. (C.4). 
Substitution of Eq. (C.4) into (C.3) gives the desired equation for G~ m 

(0 ) og, euj 
~t "+" V ai:kl + ~X m amj M + ~ x  m Gim M = 0 

This is the first of equations (4.21). The second equation, for H~ i, follows 
in an entirely analogous calculation. 

A P P E N D I X  D. O N E - C O M P O N E N T  FLUID RESULTS A N D  
T R A N S F O R M A T I O N  TO REST F R A M E  

The formal results of Section 2 for the thermodynamic variables y~ 
and fluxes 7*5 are given more explicitly in this appendix and the correlation 
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functions are transformed to the local rest frame where calculations are 
often simpler. To do so a pseudo-Galilean transformation 

p~' = p~ - mU(q~, t) (D.1) 

is performed on the ~b~ and ?~, of Eqs. (2.2) and (2.3) to give 

4 , ~ ' ~  (P, ~ - g . U  + �89  s, g, - pw,) 

Y'~,~--~ ( g i -  pW, ,  si - (e + �89  s - g-U)W~ + �89 U 2 - t , jWs, 

t, i - g,  Uj - g j U ,  + pU,  Uj)  (D.2) 

These transformations may also be effected by the matrix operation 

$' = A(U)~b, r,' = A(U)0 ' , -  U#) (D.3) 

where the matrix A is given by (moo / 
A = �89 2 1 - U j  , A-:(U) = A ( - U )  (D.4) 

- U~ 0 8~j / 

The thermodynamic parameters y~ transform as 

y = A + y  ~ (D.5) 

yO = Ylu=o ~ ( - ~ ,  t3, 0) (D.6) 

Here A + is the transpose of A. Similarly, the correlation functions may be 
expressed in terms of local equilibrium averages in the rest frame. For 
example, the transformation (D.1) on g=B(r, r'), Eq. (2.13), gives 

g(r, r') = A-:(U(r, t))g~ r')A + -:(U(r', t)) 
(D.7) 

g~ r') - (~ ( r ,  t)6a(r', t); t)Lo 

Here (.-.; t)Lo denotes an average over the local equilibrium ensemble with 
U = 0. The g~ r') are readily found to be 

3y(r) 3/:(r) 0 
8~(r') ~ 33(r') 

g~ r') = 3~(r ) ,  ~( r ' )  : 0 (D.8) 

0 0 ~(r) 3~j 8(r - r') 
3(r ' )  

Similarly, the matrix K~a of Eq. (2.14) transforms as 

Ki(r, r') = A + K ~  +-~ + U , I  

ot , f g ~  ( r ,  " - " "  ' " K2~(r, r ) dr" o-1 = r )(~b~(r )yB,(r ), t)Lo (D.9) 
3 
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Evaluation of K ~ leads to /o o 
K ~ = 0 0 

/3(r) 
8~s 8(r - r') ~-~ (gi(r)sj(r'))Lo 

3P(r') 

3P(r') 
(D.IO) 

With these results, Eq. (2.13) becomes the following set of exact equations 
for fi(r, t), ~(r, t), and U(r, t): 

(0  ) 10P 10t~ 
?5 + ~ . v  v, + ?0rZ = -~0r--7 

(~ + U.V)fi - f dr' fi(r') 3P(r') t v'-u(r') 

8 ' -fdr'  8fl(r') [xy'.o*(rq OUf(r')] ~(r) ;L- TM "-" + t~(r')~--57-/J 

fi(r ) ~ X7'.U(r') 

f , ~ [  ,,~ ,, oU,(r')] = + dr' ,LV"q*(r') + . , , t . , ~ r / j  (D.11) 

Here q*(r, t) and t*(r, t) are, respectively, the irreversible heat flux and 
momentum flux, 

7,0, _- A(U)7* = (0, q**, t~) (D.12) 

Equations (D.11) are spatially nonlocal in two regards, first because q** 
and t*. are nonlocal functionals of the thermodynamic parameters, and 
second due to the explicit nonlocality of the forms (D.11). The latter is due 
to the definition of the y~ and may be eliminated by choosing instead as 
thermodynamic parameters p, u, and U. Then Eqs. (D,11) take the more 
familiar form 

0~ 
o-7 + v . ~ u  = o 

+ U.V ~ + hV.U = - V . q *  - t~ 0U~ 
0rj 

(c~ ) 10P 10t~ (D.13) 
+ U . V  Ui + fi0ri fi0r~. 
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The irreversible fluxes 7 o* may be obtained in a similar way using Eqs. 
(D.12) and (2.20) with the result 

q~*(r' t) = f[  dT f dr' { ([eL~t-~q~'(r' t)]q/(r'' 7)" 7)L O~(r'--z Orj' 

- ([eUt-~)q,'(r, t)]~e(r', ~'); 7>Lfl(r', 7) 0Uj(r', 7) 
Ore' 

O * -- ([eL~t-~)q~'(r, t)]~:'(r', 7); 7)L q-_2--J' (r' 7) 
Or t' ~ , 

+ ([eUt-~q,'(r, t)]gj(r', 7); T\/L/~(r',~(r,, 7)r) Oh*(r' ,Or~, r )}  (D.14) 

t~(r, t) = dr dr' <[eL~t-~)alj(r, t)]qe'(r', 7); 7eL -b-~r~' 

- -  <[eL~t-~)a;j(r, t)]a~,(r', 7); 7)L/3(r', 7)~ 7) 
~re' 

7" Oq~*(r', 7) - ([eUt-~)a;j(r, t)]~'(r', 7); /L Ore' 

, /3(r', 7) 06*(r' , 7)} 
+ <[eL~t-%;j(r, t)]g,'(r', r); 72Ly----~, ' 7) Ore" (D. 15) 

The phase functions q~, a~j, and ~ are defined as 

qi(r, t) = s,(r) - f 
~(r) dr' - ~  ( g ,(r )s j(r') )Log j(r') 

e~j-(r, t) = 6j(r) - 8ij P(r) + dr' #(r ' )~(r ' )  

1 + t~(r) ~--(~ e(r) 

~:(r, t) = fdr '  [ ~ 1 ~  8/3(r, t) a# (r,, t) + ~iff(r',8~(r' t)t__.____~ _g(r',o t)] (D.16) 

The results (D.11) or (D.13), and (D.14) and (D.15) represent the exact 
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macroscopic conservation laws with constitutive equations for the dynamics 
of/3, ~, and U (or any other set of thermodynamic variables). With the 
pseudo-Galilean transformation (D.1), Eqs. (D.14) and (D.15) may be 
shown to be independent of the flow velocity. The results are clearly quite 
formal, but serve as a suitable basis for the investigation of linear and 
nonlinear hydrodynamic equations, and associated transport coefficients. It 
may be noted that for practical purposes, the functional derivatives occur- 
ring in these equations are short-ranged functions of r and r' (of the order 
of the force range), so they are well approximated by a delta function times 
the associated usual thermodynamic derivative. Such an approximation 
fails, however, for systems with Coulomb forces or near a critical point. 

The irreversible fluxes in the projection operator formalism, Eq. (2.31), 
may be analyzed in a similar way to give the equivalent results, 

q,*(r, t ) =  f~ dr f dr' (([U(t, z)q~'(r, t)]q/(r', ~-); r)L ofi(r'----z0r/r) 

- ([U(t, r)q/(r, t)]8;-k(r', ~'); ~')L/3(r', r) ~U/r',sr~, r) t (D.17) 

f~ f ( ., ~fi(r', ~) t3(r, t) = d~" dr' ([U(t, r),r,i(r, t)]q~'(r', ~'); r)L Or~' 

- ([U(t, r)8~j(r, t)]8~(r', r); r)zfi(r', r) #Uk(r', ~-); (D.18) 
ar t '  ) 

Here 8~j is equal to ~r~j, defined in Eq. (D.16), with t* = 0. These equations 
are formally simpler than Eqs. (D. 14) and (D.15), since no explicit reference 
is made to the irreversible fluxes on the right sides of (D.17) and (D.18). 

For the special case of steady shear flow considered in Section 4, these 
results simplify considerably. In particular, Eq. (D. 15) becomes 

r t  t" 
t*(r, t) = - J~  dr J dr' ([eL(t-')~j(r, t)]a~z(r', ~'); "r)Lfi(r',-r) c~Uk(r' , ~)/Sr,' 

(D.19) 

Also, since OUk/~r, = akz is nondiagonal, a~z may be replaced with 

, , ~/~ (~, ~i _ , ~ ,  (D.20) 
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to give 

fo 
t 

t ~ ( r ,  t )  = - a~l dr ([e L(t-~)t;j]~(7)T~z; ~')z 

- ak, fot dr ([eL(t-~)t~j] ~fl(z) [(n'  -- ( n " r ) L )  

a~(r) rn(N' - (N; ~)L)]; ~)Lt*,(~) 

J2 =- -a~, dr [Gij~(t, .r) + H~j(t, T)t*l(')] 

which is the result, Eqs. (4.11) and (4.12), used in Section 4. 

(D.21) 
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